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Neurological diseases can lead to poor quality of life and 
even death1. In particular, spinal cord injuries (SCIs) and 
motor neuron diseases (MNDs) prevent the transmis-

sion of neural signals from the primary motor cortex to muscles, 
and thereby limit the movements of the body and substantially 
impair the quality of life of patients with these diseases. Cellular 
and molecular treatments2,3 aim at the complete recovery of dam-
aged nerves, yet restoring motor function in them has long been 
a hard problem to solve. Instead, temporizing neurorehabilitation 
devices that aim to restore motor functions of patients can improve 
quality of life4. Neurorehabilitation devices can effectively and reli-
ably redirect biosignals to bypass damaged neural components and 
restore motor functions5,6, but conventional systems that use a von 
Neumann architecture consume high amounts of power and lack 
the neuroplasticity of their biological counterpart. Also, conven-
tional stimulation uses electrical pulses with constant amplitude, 
which often induce abrupt and drastic contraction of the muscles7, 
and because muscle contraction force is difficult to predict, this 
causes discomfort to the user8. To generate movements that are 
more natural and that ensure patient comfort, voltage ramping has 
been used during stimulation onset and de-activation9,10, but this 
method requires additional function generators. In addition, their 
rigid nature causes discomfort. These limitations could be solved 
by using neuroprosthetic electronic nerves that exploit neuroplas-
ticity, are highly stretchable and emulate the event-driven synaptic 
signal transmission in biological peripheral nerves without the use 
of external high-power computing units11,12.

Artificial peripheral nerves that emulate biological afferent and 
efferent nerves and that deliver sensory13–20 and motor21–25 informa-
tion with spike-driven neural plasticity are becoming important 
technologies for the realization of bioinspired electronic skins26,27, 

intelligent robotics28 and neurorehabilitation devices29–31. Artificial 
peripheral nerves that mimic the signal processing and functionality 
of biological nerves can restore impaired biosignal communication 
when integrated with biological systems29–31. An organic afferent (or 
sensory) nerve has been linked with an insect’s leg to demonstrate 
simple reflex action31, but no research has demonstrated artificial 
efferent (or motor) nerves that control biological motor responses 
in vertebrates, which is an essential ability in future biocompatible 
and energy-efficient neurorehabilitation devices. Practical applica-
tions of such systems for brain-directed limb movement in verte-
brates, including humans, require the coordinated and voluntary 
control of limbs. In addition to signalling through artificial periph-
eral nerves, the realization of proprioception in neurorehabilitation 
devices is a necessary requirement to restore proper movement 
as well as the sense of body position. Moreover, the device must 
exploit the principles of neural processing that emulate biological 
synaptic behaviours and should operate with low energy consump-
tion32,33, be easily fabricated and have similar mechanical properties  
as soft tissues34–36.

In this Article, we describe a stretchable neuromorphic effer-
ent nerve (SNEN) that uses stretchable organic nanowire synaptic 
transistors. The SNEN can bypass a broken electrophysiological 
signal path (for example, those caused by SCI or MND) and redi-
rect electrophysiological signals to control body movement with 
soft neural interfaces and stretchable electronic systems in a mouse 
model with neurological motor disorder. The synaptic signal poten-
tiation of the neuromorphic system inherently represents electrical 
signal ramping, which in principle would improve natural motion 
and patient comfort without the use of additional bulky electronic 
components such as function generators. The resultant muscle force 
response is gradually increased, contrary to the abrupt increases 
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and decreases induced by conventional systems. The SNEN oper-
ates at ~1/150 of the power consumption of a von Neumann archi-
tecture system that uses microprocessors. Similarly to the biological 
motor response of animals, we controlled the displacement and 
maximum force of the mouse’s leg via the firing rate in the artifi-
cial efferent nerve. We incorporated an artificial muscle spindle into 
the synaptic transistor to provide proprioceptive feedback and to 
prevent overstraining of the muscle. We show coordinated muscle 
flexion and extension, and practical motions such as walking and 
running, in a live animal. Furthermore, the feasibility of relaying 
electrophysiological signals recorded from the motor cortex of a 
behaving animal to control leg movement supports the further 
development of SNEN technology for use in future neuromor-
phic neurorehabilitation devices. SNEN technology might eventu-
ally allow for the generation of voluntary motion in patients with  
motor disorders.

Design of the SNEN
The concept of SNEN is to bypass the spinal injury or damaged 
nerve and send neuromorphic electrical signals to the muscles, as 
a functional replacement of a damaged nerve (Fig. 1a). To demon-
strate this concept, the SNEN was attached to the leg or back of a 
mouse (Fig. 1b and Supplementary Fig. 1). The SNEN is composed 
of stretchable components, including a carbon nanotube (CNT) 
strain sensor in an artificial proprioceptor, an organic semiconduct-
ing nanowire and an ion gel in a stretchable synaptic transistor, and 
soft hydrogel electrodes (Fig. 1c). Biomimetic input action potential 
(AP) signals were applied to the artificial proprioceptor, then trans-
ferred to the synaptic transistor. CNT strain sensor (artificial muscle 
spindle) detected the muscle strain and regulated the output voltage 
of the artificial proprioceptor, which is a voltage divider. The ana-
logue feedback-controlled pre-synaptic voltage pulses were applied 
to the gate electrode of artificial synaptic transistor, and resultant 
post-synaptic drain output signals were used to stimulate the mus-
cles of the mouse’s legs. In the artificial synaptic transistor, as the 
frequency of pre-synaptic gate voltage spikes (APs) was increased 
from 1 Hz to 11 Hz, excitatory post-synaptic current (EPSC) read by 
drain electrode increased (Fig. 1d); this response emulates potentia-
tion in a biological synapse. Pre-synaptic APs at 50 Hz were applied 
alternately to two synaptic transistors that would be individually 
connected to a flexor and an extensor. The devices generated clear 
EPSC responses (Fig. 1e).

Each synaptic transistor was made of a single organic semicon-
ducting nanowire, an ion-gel gate dielectric and inter-digitated 
source and drain electrodes on an elastomeric substrate 
(Supplementary Fig. 2a and Supplementary Note 1). The organic 
semiconducting nanowire, which emulates the shape of a neuron, 
was highly flexible and stretchable (100% strain) (Supplementary 
Figs. 2b and 3); it was fabricated by electrospinning and transferred 
onto a pre-strained elastomeric substrate21,37. A synaptic transistor 
array with a high resolution of 30 pixels per inch was also dem-
onstrated by direct printing of highly aligned serpentine nanowire 
array on the substrate (Supplementary Fig. 4). The synaptic transis-
tors maintained stable electrical characteristics under strain from 
0% to 100% and after 1,000 times of repeated stretching to 100% 
strain in both parallel and perpendicular directions to the charge 
transport (nanowire) direction (Fig. 1f–i and Supplementary  
Fig. 5). This nanoscale channel dimension can enable low-energy 
operation32,33.

When a pre-synaptic gate voltage VG pulse is applied to the gate 
electrode, anions in the ion gel migrate and accumulate near the 
organic semiconducting nanowire (Supplementary Fig. 2c). Holes 
are temporarily induced to the nanowire from the source electrode, 
resulting in an EPSC. The devices showed uniform electrical char-
acteristics (Supplementary Fig. 6). These post-synaptic signals are 
amplified, then applied to the muscles.

Muscle activation with SNEN
To quantify how the contraction of a muscle was affected by fre-
quency fAP of APs, we connected a single synaptic transistor to 
a knee flexor of an anaesthetized mouse’s hind limb (Fig. 2a). 
Electromyography signals elicited electrophysiological activity of 
the muscle (Supplementary Fig. 7). As fAP was increased from 1 Hz 
to 11 Hz, the maximum angular displacement increased from 6.67° 
to 40° (Fig. 2b–e and Supplementary Video 1). We measured the 
isometric force of the mouse’s hind limb by stimulating an extensor 
AP with 1 ≤ fAP ≤ 50 Hz (Fig. 2f). The maximum force increased 
from 39 mN to 412 mN (4 g to 42 g) as fAP increased (Fig. 2g). This 
change occurred because the muscle contraction response changed 
from weak contraction (twitch) at low fAP to continuous and strong 
contraction (tetanus) at high fAP (ref. 38). The gradually increased 
muscle force response and smooth leg motion were achieved by 
a synaptic transistor in response to post-synaptic signal potentia-
tion; this response is clearly different from the abrupt increase then 
decrease in muscle force, and drastic leg motion induced by con-
ventional stimulation using electrical pulses of constant amplitude 
(Supplementary Fig. 8). To emulate synchronized movement, we 
connected two synaptic transistors, one to a flexor and one to an 
extensor (Fig. 2h). APs at fAP = 50 Hz were applied alternately to the 
synaptic transistors at intervals of 1 s, and each muscle was stimu-
lated to extend and flex in sequence (Fig. 2i–k, Supplementary Fig. 
9 and Supplementary Video 2). Soft and stretchable electrically 
conductive hydrogel electrodes were used as the bio-interface to 
the muscles39,40. The nanoporous conductive polymer network gave 
high electrochemical surface area and low impedance of 0.5 kΩ at 
fAP = 1 kHz. The hydrogel electrode (electrode area 8 mm2) elicited 
higher angular displacement of the leg than did needle electrodes 
(25 G, electrode area 10 mm2) (Fig. 2i,j).

Artificial proprioceptor and power-consumption analysis
Proprioception is required for basic motor functions such as stand-
ing and walking. The absence of proprioceptive feedback degrades 
the locomotion and damages muscles, and thereby impairs inter-
actions between neuroprosthetics users and the physical environ-
ment. Therefore, restoring motor functions with proprioception 
in patients with neurological disorders has long been the goal in 
medicine and bioengineering41. However, development of methods 
to achieve proprioceptive feedback in neurorehabilitation devices is 
a challenge. An artificial muscle spindle-based proprioceptive feed-
back loop could provide unconditioned proprioceptive feedback to 
temporo-spatial coordination of limb movement, and prevent dam-
age of muscle caused by overstraining.

We demonstrated an artificial proprioceptor to detect leg move-
ment and prevent overstretching of the muscle (Fig. 3a,b). The arti-
ficial proprioceptor, together with the artificial synapse, formed a 
closed feedback loop (Fig. 3c). A sensor composed of CNTs was 
used to mimic the biological muscle spindle and to detect the exten-
sion of the leg. The sensitive CNT strain sensor was fabricated using 
a capillary-flow-based self-pinning effect. The sensor can operate 
with low hysteresis in the strain sensing range from 0% to 50%, 
similar to a previous report42 with a resistance range from 100 kΩ 
to 3 MΩ (Fig. 3d,e).

We designed a negative feedback mechanism by mimicking the 
muscle spindle. EPSC can be downregulated by the leg extension 
and increase in resistance R1 of the strain sensor (Fig. 3b). With 
a large strain, the voltage divider circuit lowers the effective gat-
ing voltage to the synaptic transistor by increasing R1 (V2 = 0 V) 
(Fig. 3f and Supplementary Fig. 10). The proprioceptive sensitiv-
ity was controlled using V2 > 0 V. This negative feedback gradu-
ally limited potentiation of the EPSCs of synaptic transistors to 
asymptotes according to the applied V2; the maximum EPSC of 
1.03 μA (V2 = 0 V, with low-sensitivity feedback) was limited to 
0.73 μA (V2 = 1.5 V, with high-sensitivity feedback) (Fig. 3g,h, 
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Supplementary Note 2, Supplementary Table 1 and Supplementary 
Figs. 11 and 12). The artificial efferent nerve should have simul-
taneous excitatory and inhibitory synaptic responses to prevent 
overstretching of muscle, similar to the biological stretch reflex. 
Therefore, the proprioceptive feedback is necessary to effectively 
limit excitatory synaptic response and resultant muscle contraction 
in real time. In the presence of feedback, the leg flexion motion was 
stable, but in the absence of feedback, it was shaky owing to over-
strain (Supplementary Fig. 13). Our approach also enabled artificial 
proprioception during repeated motions to prevent muscle damage 
caused by overstraining (Supplementary Fig. 14).

The increase of resistance of the strain sensor leads to reduced 
current flow and consequently a decrease in power consumption 
in the ‘on’ state. In detail, the SNEN consumes ~4.55 μW (‘on’ state) 
and ~5.33 μW (‘off ’ state) (Supplementary Note 3, Supplementary 
Tables 2–5 and Supplementary Fig. 15). Also, with I/V converter, 

the power consumption of SNEN system is 23.8 μW (‘on’ state) and 
7.96 μW (‘off ’ state) (Supplementary Note 3, Supplementary Fig. 16 
and Supplementary Table 5).

Simulation of power calculation of an array of the SNEN system 
suggests that its power consumption (6.1 mW) is two orders of mag-
nitude lower than a system composed of a one-transistor/one-strain 
sensor array connected to silicon integrated circuit chips with a 
microprocessor (928 mW) (Supplementary Figs. 17 and 18 and 
Supplementary Table 6). The reduction occurs because the SNEN 
system operates only in response to events31,33 whereas the silicon 
integrated circuit chips with a microprocessor operate continuously.

The organic components are stable for long-term usage. A long-term 
stability test of a CNT strain sensor and a soft hydrogel electrode 
encapsulated by styrene-ethylene-butylene-styrene (SEBS) was con-
ducted in phosphate-buffered saline (PBS; 1X, pH 7.4) solution with 
accelerated ageing time at 60 °C (refs. 43,44) (Supplementary Note 4).  
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With ageing factor Q10 = 2, the resistance of the strain sensor 
and the soft electrode was stable for 14 days at 60 °C, equiva-
lent to 69 days at body temperature (TBT, 37 °C) (Supplementary  
Fig. 19a,b). A stability test of a synaptic transistor (Supplementary 
Fig. 20 and Supplementary Note 4) encapsulated by polydimeth-
ylsiloxane (ref. 36) was conducted in PBS solution with accelerated 
ageing time at 60 °C. The maximum on current and threshold volt-
age Vth of the synaptic transistor was maintained stably for 6 days at 
60 °C (Supplementary Fig. 19c–e); with ageing factor Q10 = 2; this is 
equivalent to 30 days at TBT. The stability of synaptic transistor was 
also measured in air ambient condition during 14 days and showed 
uniform I–V characteristics. A device operated stably after being 
stored for ~2 years, but with slightly increased off-current, likely 
due to a moisture effect (Supplementary Fig. 19f,g).

Bipedal walking with SNEN
The feasibility of using the SNEN in practical locomotion was 
shown with a mouse suspended by a vertical supporter (Fig. 4a). 

Input signals were applied to the synaptic transistor that was con-
nected to an extensor of the right hind leg (Extended Data Fig. 1a).  
The input signal patterns were regulated to control the swing 
motion of the leg. The EPSC signals were sufficient to elicit a sharp 
contraction of the extensor, so the leg could swing fully and kick 
a ball to a greater distance than hind leg length (Extended Data  
Fig. 1b,c and Supplementary Video 3).

We also implemented bipedal walking locomotion (Fig. 4b). 
One synaptic transistor was connected to the flexor in the left 
leg and the extensor in the right leg, while the other transis-
tor was connected to the extensor in the left leg and the flexor 
in the right leg (Fig. 4c). Alternating input signals to each SNEN 
induced bipedal walking locomotion (Fig. 4d and Extended Data 
Fig. 2). By adjusting the input APs, we controlled the moving 
speed from slow walking (0.8 cm s−1) to running (2.5 cm s−1) on 
a treadmill (Fig. 4e–g and Supplementary Video 4). These results 
suggest that the SNEN has the potential to provide locomotion in  
living animals.
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SNEN with electrophysiological signals
Furthermore, to demonstrate applicability of the SNEN in future 
neuromorphic neurorehabilitation devices, neural signals recorded 
from the animal’s primary motor cortex during limb movement 
were used as pre-synaptic input signals for the artificial efferent 
nerve. Electrophysiological data of two single-unit recorded neu-
rons was sampled from a public dataset45 (Extended Data Fig. 3). 

The firing patterns of both neurons were used as the gate voltage of 
the synaptic transistor. Neuron 1 with a high firing rate (34.8 Hz) 
triggered a higher potentiated amplitude of EPSC than did neuron 2 
that had a low firing rate (2.8 Hz) (Extended Data Fig. 3).

The device can process electrical inputs from multiple neurons. 
Electrophysiological data of seven single-unit recorded neurons 
(numbers 1–7) were extracted from the public dataset45 (Fig. 5a,b).  
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Two pre-synaptic input signal patterns composed of combined 
signals from five neurons (numbers 1–5) were projected to SNEN 
A, and the combined signals from five neurons (numbers 3–7) 
were projected to SNEN B (Fig. 5c). SNEN A was interfaced with 
a flexor, and SNEN B was interfaced with an extensor (Fig. 5c). 
The device, as an analogue of an axon hillock, summed multiple 
neural inputs at different firing rates and yielded an output EPSC 
(Fig. 5d,e). Then the muscles were activated by the voltage signals 
converted from EPSC by I/V converter (Supplementary Note 5 and 
Supplementary Fig. 21). In the overall process, the SNEN received 
neural signals of motor cortex and initiated motion in the muscle, 
bypassing the spinal cord and peripheral nervous system. The two 
muscles were alternately stimulated, and executed different angular 
swing motions (Fig. 5f and Supplementary Fig. 22). The SNEN can 
relay single-unit electrophysiological signals to a muscle and cause 
muscle movement, and therefore has potential to take neural signals 
from the brain and control limb movement by using a simple device 
composed of one strain sensor and a synaptic transistor.

Discussion
We have reported an SNEN. The SNEN was operated with both 
simulated APs and extracellularly recorded public neural data as 
input, to stimulate muscles in the leg of an anaesthetized mouse, 
bypassing the spinal cord. The organic stretchable artificial synapses 
stably relay neural signals to the muscles. Similar to the biological 
voluntary motor response, the firing rate in the SNEN determines 
the motion and maximum force of the mouse’s leg. We also demon-
strate an artificial muscle spindle that detects the change of muscle 
length by using strain sensors, and enables a negative feedback loop. 
This proprioception function prevents muscle damage due to over-
stretching of the muscles. Furthermore, by implementing several 
locomotions such as ‘kicking a ball’ and ‘walking/running’ in living 

animals, the SNEN shows promise for the treatment of motor disor-
ders caused by degenerative neural diseases.

This work shows that advanced functions of coordinated and 
complex leg motions can be elicited in living mammals via soft 
neural interfaces and stretchable electronic systems. This is a 
step towards a future artificial nerve system that could serve as a 
low-power neuromorphic prosthetic device that enables limb move-
ment via motor-cortex-driven signals. In the future, simple systems 
such as the SNEN that use the principle of neuroplasticity may rep-
resent a promising bioengineering technology for the generation of 
voluntary motion in animals with motor disorders, obviating the 
need for heavy and complicated electronic devices.

Methods
Fabrication of electrospun organic nanowires37. Homogeneous mixture solution 
of fused thiophene diketopyrrolopyrrole (FT4-DPP)-based conjugated polymer 
poly[(3,7-bis(heptadecyl)thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene-
5,5′-diyl)(2,5-bis(8-octyloctadecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-
1,4(2H,5H)-dione-5,5′-diyl)] (provided by Corning Incorporated, number average 
molecular weight 33,000 g mol−1, polydispersity index 2) and high-molecular-weight 
polyethylene oxide (Aldrich, weight average molecular weight 400,000 g mol−1, 
7:3 w:w) in chloroform was used to fabricate organic semiconducting nanowires 
by electrospinning (printing parameters: tip-to-substrate distance 15 cm, external 
voltage 3 kV, solution feeding rate 1 μl min−1). Single nanowires were aligned 
between two parallel electrodes and transferred onto the substrate.

Fabrication of organic stretchable electronic synapse21. Inter-digitated CNT 
source–drain electrodes were fabricated by spray coating single-wall CNTs on 
hydrophobic SiO2/Si substrate, then transferred onto free-standing SEBS substrate 
(500 μm). A single electrospun organic nanowire was located on a CNT-patterned 
SEBS substrate that had been pre-strained to 100%. When the strain was released, 
the highly flexible nanowire assumed a wavy structure that was stable after 
repeated mechanical deformation. Ion-gel gate dielectric of poly(styrene-b-methyl 
methacrylate-b-styrene) (PS-PMMA-PS) triblock co-polymer and 1-ethyl-
3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]) ionic 
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liquid dissolved in ethyl acetate (0.7:9.3:90, w/w) was formed on the channel  
area by drop casting.

For the stability test in PBS solution, poly(vinylidene 
fluoride-hexafluoropropylene) was used as a matrix material of polymer gel 
electrolyte instead of PS-PMMA-PS triblock co-polymer and encapsulated by 
polydimethylsiloxane to enhance the device stability36.

Fabrication of soft electrode40. Poly(3,4-ethylenedioxythiophene):poly(sty
rene sulfonate) (PEDOT:PSS) Orgacon ICP 1050 was provided by Agfa as a 
surfactant-free aqueous dispersion with 1.1 wt% solid content. Before use, the 
PEDOT:PSS dispersion was filtered through a 1.0-μm filter to remove any large 
agglomerates. Glycerol (G9012-100ML) was purchased from Sigma-Aldrich; 
0.165 g of glycerol was added to 15 ml of PEDOT:PSS solution. The mixture was 
stirred vigorously at room temperature for 20 min. The PEDOT:PSS/glycerol 
aqueous mixture was then filtered through a 0.45-μm syringe filter. SEBS solution 
(0.1 g ml−1 in toluene) was drop cast on a glass slide and allowed to dry overnight. 
After the solvent had evaporated, the SEBS film was treated with oxygen plasma 
(Technics Micro-RIE Series 800, 150 W, 200 mTorr) for 1 min. The prepared 
PEDOT:PSS/glycerol aqueous mixture was spin coated on the SEBS film at 
1,500 rpm, then annealed at 120 °C for 10 min. A polyethylene terephthalate mask 
(with 2 mm × 40 mm rectangular pattern cut using a Silhouette Cameo Cutter) was 
placed on the PEDOT:PSS/glycerol film, then dry-etched with oxygen plasma for 
10 min. Another SEBS film was laminated on the PEDOT:PSS/glycerol/SEBS  
film to encapsulate the interconnect area. The soft electrode was annealed on a 
hotplate for 40 min at 120 °C. The electrode was soaked in 1X PBS for at least 2 h 
before in vivo application.

Fabrication of CNT strain sensor by using self-pinning effect42. A thin SEBS 
substrate (~100 μm) was prepared on the glass. The film mask with hollow patterns 
covered the surface of the SEBS. The uncovered surface was made hydrophilic 
by treating it with oxygen plasma (150 W, 20 s). The mask was detached, then a 
solution of single-wall CNTs was dropped on the hydrophilic patterns by using a 
micropipette, then dried at room temperature.

Device measurement. Synaptic transistors. Pre-synaptic voltage spikes were 
applied to the gate electrode (VG = −1 V), and post-synaptic currents were read by 
the drain electrode (VD = −1 V) with grounded source electrode.

SNEN. Pre-synaptic voltage spikes were applied to the gate electrode (VG = −1 V) 
and a source voltage of 1 V. For muscle stimulation, the drain electrode was 
connected to I/V converter to amplify output signals.

In vivo experiment. Preparation of mice. Adult (25–35 g) male C57BL/6J mice 
(Jackson Laboratories) were group-housed, given access to food pellets and 
water ad libitum, and maintained on a 12 h:12 h light:dark cycle. All animals were 
held in a facility next to the laboratory starting 1 week before surgery, through 
post-surgery and throughout the duration of the behavioural assays to minimize 
stress due to transportation and disruption by foot traffic. All procedures were 
approved by the Animal Care and Use Committee of Stanford University (protocol 
APLAC-31893) and Institutional Animal Care and Committee of Seoul National 
University (protocol SNU-201105-3), and conform to US National Institutes of 
Health and Korea Food & Drug Administration guidelines.

For in vivo electrical stimulation on muscle, mice were acclimatized to 
the holding facility for more than 1 week, then anaesthetized using isoflurane 
or ketamine/xylazine or alfaxan/xylazine. A heating pad at 37 °C was placed 
underneath the body. To ensure that the animal was fully anaesthetized, we verified 
the absence of paw reflexes by pinching a hind paw with tweezers, and checked 
the absence of eye reflexes. We then shaved both legs from the knee to the hip by 
using an electrical shaver. Protective eye liquid gel was applied to the eyes with 
a cotton-tipped swab. We then disinfected the surgery field with chlorhexidine 
and 70% ethanol by wiping with a gauze pad or cotton-tipped swab. The depth of 
anaesthesia was monitored by pinching the feet of the mice periodically. A 2-cm 
incision was made in the skin to expose the rectus femoris and gastrocnemius 
muscles. Soft and elastic hydrogel electrodes (surface area 8 mm2) or needle 
electrodes (25 G) were gently interfaced with the extensor and flexor muscles. 
After implantation, the skin was sutured using surgical knots. The electrodes were 
connected to the artificial proprioceptor and artificial synapses. Pre-synaptic gate 
voltage pulse was applied to the artificial synaptic transistor. The extracellular 
recording data were collected by Matthew G. Perich in the laboratory of Lee E. 
Miller at Northwestern University and downloaded from CRCNS.org45. Single-unit 
AP from the dataset was recorded from neurons in premotor cortex by using a 
multi-electrode array. The leg response was recorded using a digital microscope. 
The force generated by leg movement was measured by a force gauge placed next 
to the mouse leg.

Protractor marks printed on paper were placed under the leg to enable 
measurement of the swing angle. Electromyography was used to record muscle 
activity during electrical stimulation. Three needle electrodes were used to 
penetrate the muscles, and the electrodes were connected to a signal acquisition 
system (Muscle SpikerBox, Backyard Brain). To demonstrate the natural 

movement, such as kicking, walking and running, the mice were suspended  
with a vertical supporter on the ground. The mice were killed immediately after  
the experiment.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are  
available within the paper and its Supplementary Information. The raw and 
analysed datasets generated during the study are available from the corresponding 
authors on request.
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Extended Data Fig. 1 | Demonstration of practical locomotion of ‘kicking a ball’. a, Design of the mouse for kicking a ball. An extensor was connected 
to SNEN system and the swing motion was controlled by synaptic signals. b,c, Photographs of the mouse kicking a ball with a weak and short muscle 
contraction (a small swing) (b) and a strong and long muscle contraction (a full swing) (c).
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Extended Data Fig. 2 | Signals of SNEN for bipedal walking locomotion. a–d, Presynaptic input spike patterns (upper) and resultant EPSCs (lower) with 
different moving speeds of 0.8 cm/s (slow walking) (a), 1 cm/s (fast walking) (b), 1.6 cm/s (jogging) (c), and 2.5 cm/s (running) (d).
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Extended Data Fig. 3 | SNEN with electrophysiological signals with different firing rates. a, b, Presynaptic input spike patterns referred from neural  
data (a) and resultant EPSCs (b) with high firing rate (34.8 Hz) (neuron 1, red) and low firing rate (2.8 Hz) (neuron 2, black).
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to convince us that the effect was real. We aimed for at least three biological replicates, and obtained several technical replicates for  each 
sample.

Data exclusions No data were excluded from the analyses.

Replication All experimental findings were reliably reproduced.

Randomization The experimental groups were formed based on what was being tested, with random selections.

Blinding Blinding was not relevant to this study.
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult (25–35 g) male C57BL/6J mice (Jackson Laboratories) were used.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All procedures involving implantation and electrical stimulation were performed in accordance with protocols approved by the 
Institutional Animal Care and Use Committee (IACUC) at Stanford University and Seoul National University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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